Median of Median algorithm implementation in Java. It also provides Kth element in array after sorting. This algorithm runs in O(n) time.
Please leave comments below for more questions and remarks.
Output:
62 ( value returned from algorithm)
[2, 5, 6, 8, 11, 16, 17, 20, 22, 29, 30, 31, 33, 39, 44, 53, 55, 62, 63, 69, 77, 81, 88, 88, 90, 99]
62 (kth value after sorting)
Please leave comments below for more questions and remarks.
import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.List; public class Solution { public static void main(String[] args) { Solution s = new Solution(); List<Integer> a = Arrays.asList(88, 30, 11, 17, 22, 16, 39, 8, 31, 55, 29, 63, 77, 69, 99, 90, 81, 2, 20, 53, 62, 5, 88, 33, 44, 6); System.out.println(s.findKthElement(a, 18)); Collections.sort(a); System.out.println(a); System.out.println(a.get(18)); } public int findKthElement(List<Integer> a, int k) { if (a.size() < 10) { Collections.sort(a); return a.get(k); } ArrayList<Integer> medians = new ArrayList<Integer>(); for (int i = 0; i < a.size() - a.size() % 5; i = i + 5) medians.add(getMedian(a.subList(i, i + 5))); int v = getMedian(medians); ArrayList<Integer> left = getPartition(a, v, true); ArrayList<Integer> right = getPartition(a, v, false); return (left.size() + 1 == k) ? v : (left.size() > k) ? findKthElement( left, k) : findKthElement(right, k - left.size()); } public int getMedian(List<Integer> a) { Collections.sort(a); return a.get(a.size() / 2); } public ArrayList<Integer> getPartition(List<Integer> a, int v, boolean isLessThan) { ArrayList<Integer> res = new ArrayList<Integer>(); for (int val : a) if (isLessThan && val < v) res.add(val); else if (!isLessThan && val >= v) res.add(val); return res; } }
Output:
62 ( value returned from algorithm)
[2, 5, 6, 8, 11, 16, 17, 20, 22, 29, 30, 31, 33, 39, 44, 53, 55, 62, 63, 69, 77, 81, 88, 88, 90, 99]
62 (kth value after sorting)
this is not median of medians. read more about median of medians
ReplyDelete